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1. Introduction

In type II superstring theory, an effective four dimensional low energy field theory is ob-

tained by compactification of the six extra dimensions. In the absence of fluxes, requiring

unbroken four dimensional N = 2 supersymmetry leads to the well known condition that

the six dimensional internal manifold should be Calabi-Yau. In recent years, a large body of

literature has been devoted to attempts to find a similarly elegant condition in the presence

of NS and RR fluxes, both for N = 2 and N = 1 supersymmetry. (See for instance [1] for a

comprehensive review and extensive referencing). The intense scrutiny, which these more

general compactifications have undergone, reflects both their physical and mathematical

interest.

In flux compactifications of type II superstring theories, requiring unbroken four di-

mensional N = 1 supersymmetry leads to certain topological and differential conditions

on the internal manifold M [2 – 4]. These conditions are naturally expressed in the math-

ematical language of generalized complex geometry [5, 6]. (See [7 – 9] for recent reviews

of this subject aimed to a physical readership). They state the existence of two nowhere

vanishing globally defined TM ⊕ T ∗M pure spinors. One of these satisfies the appropriate

differential condition required for it to define a twisted generalized Calabi-Yau structure

on M . The other, conversely does not, the obstruction being due to the presence of RR

fluxes and warping.
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Ordinary fluxless type II compactifications are described by (2, 2) superconformal

sigma models on Calabi-Yau manifolds. These are however nonlinear interacting field

theories and, so, are rather complicated and difficult to study. In 1988, Witten showed

that a (2, 2) supersymmetric sigma model on a Calabi-Yau manifold could be twisted in

two different ways, to yield the so called A and B topological sigma models [10, 11]. Un-

like the original untwisted sigma models, the topological models are soluble field theories:

the calculation of observables can be carried out by standard methods of geometry and

topology.

The recent interest in flux compactifications has prompted the search for topological

sigma models on generalized complex manifolds. In the particular case of biHermitian

manifolds [12], this problem was tackled in [13, 14] by Kapustin and Kapustin and Li, who

formulated it in the suitable geometrical framework of generalized Kaehler geometry [6] and

derived the appropriate twisting prescriptions. In refs. [15 – 17], developing on Kapustin’s

and Li’s results, the biHermitian topological action and symmetry variations were explicitly

derived and written down.

BiHermitian geometry can accommodate only NS flux. If one wishes to incorporate RR

fluxes, it is non longer sufficient. In the last few years, many attempts have been made to

construct topological sigma models with generalized complex target manifolds more general

than generalized Kaehler ones [18 – 22]. All these endeavors were somehow unsatisfactory

either because they remained confined to the analysis of geometrical aspects of the sigma

models or because they yielded field theories which were not directly suitable for quantiza-

tion. In [20 – 22], the sigma models were constructed by employing the Batalin-Vilkovisky

(BV) quantization algorithm [23, 24] in the Alexandrov-Kontsevich-Schwartz-Zaboronsky

(AKSZ) formulation [25]. To date, this seems to be the most promising approach to the

solution of the problem of constructing interesting sigma models on generalized complex

target manifolds, though, as shown in [26], the implementation of gauge fixing remains a

major technical obstacle even in the simplest cases.

One efficient way of generating sigma models on non trivial manifolds is the gauging

of sigma models on simpler manifolds. The target space of the gauged model turns out

to be the quotient of that of the ungauged model by an action of the gauge group. In

certain cases, when a symplectic structure and a moment map for the gauge group action

can be defined, this construction is a particular case of a general procedure called Hamil-

tonian reduction [27]. The gauging of (2,2) supersymmetric sigma models on biHermitian

manifolds was studied originally by Hull, Papadopoulos and Spence in [28] developing on

the results of [12]. Their analysis was however limited to the subclass of almost product

structure biHermitian spaces because of the lack of an off-shell (2,2) supersymmetric action

in the general case at that time. Recently, such action has been obtained in ref. [29]. This

has led the authors of [30] to extend the analysis of [28] for general biHermitian target

spaces. In [31], the same analysis has been carried out in the on-shell formalism. Simul-

taneously, many mathematical studies of the problem of reduction of generalized complex,

Calabi-Yau and Kaehler manifolds have appeared [32 – 43], calling for a comparison with

the target space geometries yielded by sigma model gauging.

In this paper, we revisit our earlier work on the AKSZ type formulation of topological
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sigma model on generalized complex manifolds, or Hitchin model, which we introduced in

2004 in [20]. We show that the target space geometry geometry encoded in the BV master

equations is twisted Poisson-quasi-Nijenhuis geometry recently introduced and studied by

Stiénon and Xu (in the untwisted case) in [44]. Poisson-quasi-Nijenhuis geometry is more

general than generalized complex geometry and comprises it as a particular case. This

should clarify the issue of the underlying geometry of the Hitchin model raised but not

solved in [20]. Next, we show how gauging (here meant in a non standard way explained

in the following) can be incorporated in the Hitchin model. We find that the geometry

resulting form the BV master equation is closely related to but more general than that

described by Lin and Tolman in [40, 41] and is fully b symmetry covariant, suggesting a

natural framework for the study of reduction of twisted Poisson-quasi-Nijenhuis manifolds.

The plan of the paper is as follows. In section 2, we review the basic features of an

AKSZ type formulation of topological sigma models relevant in the following. In section 3,

we introduce the Weil sigma model, a canonical sigma model associated to any real Lie

algebra, and study it in the AKSZ framework. In section 4, we review the AKSZ formulation

of the Poisson sigma model and gauge it by coupling it to the Weil model. This introduces

section 5, where we revisit the AKSZ formulation of the Hitchin sigma model showing that

the underlying geometry is twisted Poisson-quasi-Nijenhuis and gauge it by coupling it

again to the Weil model. In section 6, we study the geometry of the Hitchin-Weil model

and show substantial evidence that this may encode a rather general reduction scheme for

Poisson-quasi-Nijenhuis geometry. Finally, in section 7, we discuss the results obtained.

2. The AKSZ scheme

The Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) formalism of ref. [25] is a

method of constructing solutions of the Batalin-Vilkovisky (BV) classical master equa-

tion directly, without starting from a classical action with a set of symmetries, as is usually

done in the BV framework [23, 24]. In ref. [45, 46], using such formalism, Cattaneo and

Felder managed to obtain the BV action of the Poisson sigma model [47, 48]. Their ap-

proach is closely related the one of the present paper. For this reason, we shall review it

briefly. We refer the reader to app. A for a review of de Rham superfield formalism used

throughout this paper.

The AKSZ formulation of the Poisson sigma model of ref. [46] can be summarized in

the following terms.

1. The field space is Maps(T [1]Σ, Y ), where Σ is a closed surface and Y = T ∗[1]M with

M a smooth manifold.

2. T [1]Σ is endowed with a degree 1 homological vector field D and a D invariant

measure ̺ of degree 2. Under the isomorphism Fun(T [1]Σ) ≃ Ω∗(Σ), D corresponds

to the de Rham differential and ̺ to the usual Lebesgue measure of Σ.

3. Y is endowed with a degree 1 symplectic form 2-form ω and a degree 1 homological

vector field Q that is Hamiltonian with degree 2 Hamiltonian function P ∈ Fun(Y ).
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ω is the standard degree 1 symplectic form of Y and P is a degree 2 element of

Fun(Y ) corresponding to a Poisson 2-vector.

4. Using the above data, a degree −1 symplectic form ω̃ on Maps(T [1]Σ, Y ) is con-

structed by pulling back the symplectic form ω of Y by the evaluation map ev :

T [1]Σ × Maps(T [1]Σ, Y ) → Y and integrating on T [1]Σ with respect to the measure

̺. This yields the BV symplectic form and the BV antibrackets (·, ·) of the Poisson

sigma model.

5. The homological vector field D of T [1]Σ induces a homological vector field D̂ on

Maps(T [1]Σ, Y ). This is Hamiltonian with degree 0 Hamiltonian function S1 satisfy-

ing (S1, S1) = 0.

6. The homological vector fields Q of Y induces a homological vector field Q̃ on

Maps(T [1]Σ, Y ). This is Hamiltonian with degree 0 Hamiltonian function S2 sat-

isfying (S2, S2) = 0. S2 is obtained by composing P with the given field φ ∈

Maps(T [1]Σ, Y ) and integrating on T [1]Σ with respect to the measure ̺.

7. D̂ and Q̃ anticommute. Correspondingly, (S1, S2) = 0.

8. The Poisson sigma model action S is just S = S1 + S2.

In this paper, we consider sigma models with the following general features.

1. The field space is of the form Maps(T [1]Σ, Y ), where Σ is again a closed surface

and Y is a smooth supermanifold (roughly a grade shifted cotangent bundle of some

graded manifold N).

2. T [1]Σ is endowed with a degree 1 homological vector field D and a D invariant

measure ̺ of degree 2, the same as those of the Poisson sigma model.

3. Y is endowed with a degree 1 symplectic form 2-form ω and a degree 1 homological

vector field Q that is Hamiltonian with degree 2 Hamiltonian function P ∈ Fun(Y ).

However, in the models treated in this paper, there are other relevant target space

data which are not elements of Fun(Y ).

4. A degree −1 symplectic form ω̃ on Maps(T [1]Σ, Y ) is constructed. In general, this

contains a term obtained by pulling back the symplectic form ω of Y by the evaluation

map ev : T [1]Σ × Maps(T [1]Σ, Y ) → Y and integrating on T [1]Σ, as in the Poisson

sigma model, plus a twist term which does not originate this way. This yields anyway

the BV symplectic form and the BV antibrackets (·, ·) of the sigma model.

5. The homological vector fields D of X induces a homological vector field D̂ on

Maps(T [1]Σ, Y ), that is Hamiltonian with degree 0 Hamiltonian function S1 sat-

isfying (S1, S1) = 0, as in the Poisson sigma model.

– 4 –
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6. A homological vector field Q̃ on Maps(T [1]Σ, Y ) is constructed. This is Hamiltonian

with degree 0 Hamiltonian function S2 satisfying (S2, S2) = 0. In general, S2 is

fully obtained from target space data and involves integration with respect to the

measure ̺ but, however, it is not obtained by composing some element of Fun(Y )

with the given field φ ∈ Maps(T [1]Σ, Y ): there are terms in S2, which cannot cannot

be generated in this way.

7. D̂ and Q̃ anticommute. Correspondingly, (S1, S2) = 0, just as in the Poisson sigma

model.

8. The sigma model action S is S = S1 + S2, just as in the Poisson case.

The above discussion indicates that, in spirit, the field theoretic geometrical scheme of

the present paper is essentially the same as that of the AKSZ formulation of the Poisson

sigma model of ref. [46]. For this reason, we shall it the AKSZ scheme, though, strictly

speaking, it differs from the standard AKSZ scheme at significant points. The original

AKSZ formulation, geometrically beautiful as it is, it is quite rigid and hardly allows

any other model than the Poisson sigma model in 2 dimensions, as rightfully claimed

Roytenberg in [49].

Our formal framework has the following basic features. Each sigma model, which we

shall consider below, is characterized by a pair of action functionals Sr, r = 1, 2, which

satisfy the joined BV master equation

(Sr, Ss) = 0, r, s = 1, 2. (2.1)

With the Sr there are associated odd BV variations by

δrφ = (Sr, φ), (2.2)

where φ is any field of the model. When (2.1) holds, one has

δrδs + δsδr = 0, r, s = 1, 2. (2.3)

The choice of the action functionals Sr, r = 1, 2, is non unique. One is allowed to carry

out a linear redefinition of the form

S′
r =

2
∑

s=1

ArsSs, (2.4)

where (Ars)r,s=1,2 is a non singular 2 by 2 matrix. For each sigma model considered in this

paper, it is possible to choose S1 in such a way that for any field φ,

δ1φ = dφ. (2.5)

where d is the de Rham differential of the world sheet. Thus, δ1 is nothing but the

homological vector field D̂ discussed above

δ1 = D̂. (2.6)
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δ2 is then identified with the homological vector field Q̃.

δ2 = Q̃. (2.7)

Since S2 is defined up to the addition of a multiple of S1, Q̃ is correspondingly defined up

to the same multiple of D̂. One may try to use this freedom to make S2 and so Q̃ to be

related in some meaningful way to the geometry of Y , as in the Poisson sigma model, but,

as already noticed, this cannot be achieved in general.

3. The Weil sigma model

In this section, we introduce the Weil sigma model, which plays an important role in the

following. The Weil model is a canonical sigma model associated to any real Lie algebra g.

As it will turn out, coupling to the Weil model implements the gauging of the symmetry

associated with the connected Lie group G having g as its Lie algebra.

The field content of the model consists of fields β ∈ C∞(T [1]Σ, g∨[0]), γ ∈

C∞(T [1]Σ, g[1]), B ∈ C∞(T [1]Σ, g∨[−1]) and Γ ∈ C∞(T [1]Σ, g[2]), where g is for the

time being a real vector space. The BV odd symplectic form is

ΩW =

∫

T [1]Σ
̺
[

δβiδγ
i + δBiδΓ

i
]

. (3.1)

This satisfies obviously

δΩW = 0. (3.2)

The associated BV rackets are

(F,G)W =

∫

T [1]Σ
̺
[δrF

δβi

δlG

δγi
−

δrF

δγi

δlG

δβi

+
δrF

δBi

δlG

δΓi
−

δrF

δΓi

δlG

δBi

]

, (3.3)

for any two functionals F , G on field space.

The model is characterized by two basic action functionals given by

SW1 =

∫

T [1]Σ
̺
[

βidγi − BidΓi
]

, (3.4a)

SW2 =

∫

T [1]Σ
̺
[

βiΓ
i −

1

2
f i

jkβiγ
jγk − f i

jkBiΓ
jγk

]

, (3.4b)

where f ∈ g ⊗ ∧2g∨. A simple computation yields the BV brackets

(SW1, SW1)W = 0, (3.5a)

(SW1, SW2)W = 0, (3.5b)

(SW2, SW2)W = 2

∫

T [1]Σ
̺
[1

6
gi

jklβiγ
jγkγl +

1

2
gi

jklBiΓ
jγkγl

]

, (3.5c)

where g ∈ g ⊗ ∧3g∨ is given by

gi
jkl = f i

mjf
m

kl + f i
mkf

m
lj + f i

mlf
m

jk. (3.6)

– 6 –
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Therefore, the joined BV master equations

(SWr, SWs)W = 0, r, s = 1, 2, (3.7)

are satisfied if and only if

gi
jkl = 0, (3.8)

that is when g is a Lie algebra with structure constants f i
jk.

The BV variations associated with the actions SWr are defined according to (2.2) as

δWr = (SWr, )W . Explicitly,

δW1βi = dβi, (3.9a)

δW1γ
i = dγi, (3.9b)

δW1Bi = dBi, (3.9c)

δW1Γ
i = dΓi, (3.9d)

δW2βi = −f j
ikβjγ

k − f j
ikBjΓ

k, (3.9e)

δW2γ
i = Γi −

1

2
f i

jkγ
jγk, (3.9f)

δW2Bi = −βi + f j
ikBjγ

k, (3.9g)

δW2Γ
i = −f i

jkγ
jΓk. (3.9h)

From the above analysis, it follows that the Weil sigma model can be framed in the

AKSZ scheme of section 2.

The Weil sigma model fields β, γ, B, Γ define together a map of T [1]Σ into T ∗[1]g∨[0]⊕

T ∗[3]g∨[−1]. Hence, the Weil sigma model can be viewed as a Poisson sigma model whose

target space is the graded vector space g∨[0] ⊕ g∨[−1]. Albeit interesting, we shall not

pursue this line of interpretation any further.

To any Lie algebra g, there is canonically associated the Weil algebra W (g) = ∧∗g∨[1]⊗

∨∗g∨[2]. This is the tensor product of the antisymmetric and symmetric algebras of g∨ in

degree 1 and 2, respectively. The natural g-valued generators ω, Ω of W (g) carry degrees

1, 2, respectively. The Weil operator dW acts as

dW ωi = Ωi −
1

2
f i

jkω
jωk, (3.10a)

dW Ωi = −f i
jkω

jΩk, (3.10b)

and is extended on W (g) by linearity. dW is nilpotent

dW
2 = 0. (3.11)

The cohomology of (W (g), dW ) is actually trivial.1 It appears that the fields γ, Γ describe

the embedding of T [1]Σ into the Weil algebra. Further, by (3.9f), (3.9h), for any point

1 As is well known, it is possible to define also a g basic cohomology of (W (g), dW ), which turns out to

be non trivial.
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z ∈ T [1]Σ, the evaluation map ez : C∞(T [1]Σ,W (g)) 7→ W (g) is a chain map of the chain

complexes (C∞(T [1]Σ,W (g)), δW2), (W (g), dW ). This justifies the name given to the sigma

model considered above.

The Weil sigma model describes a supersymmetric gauge ghost system. The algebraic

structure presented here is closely related to those appearing in the so called topological

field theories of cohomological type. (See sect 10.3 of ref. [50] for a thorough review of

these matters with many illustrative examples).

4. The Poisson-Weil sigma model

In this section, we illustrate the Poisson-Weil sigma model. This is interesting on its own

and serves also the purpose of introducing the treatment of the more complicated Hitchin-

Weil model expounded later. Our presentation is closely related to that of ref. [20], in turn

inspired by refs. [45, 46].

The field content of the Poisson sigma model consists of a degree 0 embedding x ∈

C∞(T [1]Σ,M) and a degree 1 section y ∈ C∞(T [1]Σ, x∗T ∗[1]M). The BV odd symplectic

form is

ΩM =

∫

T [1]Σ
̺ δxaδya. (4.1)

This satisfies obviously

δΩM = 0. (4.2)

The associated BV antibrackets are given by

(F,G)M =

∫

T [1]Σ
̺

[

δrF

δxa

δlG

δya

−
δrF

δya

δlG

δxa

]

, (4.3)

for any two functionals F , G on field space. See app. B for technical details.

The model is characterized by two action functionals

SP1 =

∫

T [1]Σ
̺ yadxa, (4.4a)

SP2 =

∫

T [1]Σ
̺

1

2
P ab(x)yayb, (4.4b)

where P ∈ C∞(M,∧2TM) is a 2-vector defining an almost Poisson structure on M .

A simple computation yields the BV brackets

(SP1, SP1)M = 0, (4.5a)

(SP1, SP2)M = 0, (4.5b)

(SP2, SP2)M = 2

∫

T [1]Σ
̺

[

−
1

6
Aabc(x)yaybyc

]

, (4.5c)

where the 3-vector A ∈ C∞(M,∧3TM) is given by

Aabc = P ad∂dP
bc + P bd∂dP

ca + P cd∂dP
ab. (4.6)

– 8 –
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Therefore, the joined BV master equations

(SPr, SPs)M = 0, r, s = 1, 2, (4.7)

are satisfied if and only if

Aabc = 0. (4.8)

As is well-known, condition (4.8) ensures the almost Poisson structure P is actually a

Poisson structure, so that M is a Poisson manifold.

The BV variations associated with the actions SPr are defined according to (2.2) as

δPr = (SPr, )M . Explicitly, one has

δP1x
a = dxa, (4.9a)

δP1ya = dya, (4.9b)

δP2x
a = P ab(x)yb, (4.9c)

δP2ya =
1

2
∂aP

bc(x)ybyc. (4.9d)

From the above considerations, we see that the Poisson sigma model can be framed

in the AKSZ scheme of section 2, as was in any case evident from the AKSZ analysis of

ref. [46]

One can couple the Poisson and the Weil sigma models to obtain the Poisson-Weil

sigma model. The field space of Poisson-Weil model is simply the Cartesian product

of those of the Poisson and Weil models. The BV odd symplectic form ΩMW of the

Poisson-Weil model is correspondingly the sum of those of the Poisson and Weil models,

ΩMW = ΩM + ΩW . Consequently, the BV antibrackets ( , )MW are the sum of the BV

antibrackets ( , )M and ( , )W given by (4.3), (3.3).

The Poisson-Weil model is characterized by two action functionals:

SPW1 = SP1 + SW1, (4.10a)

SPW2 = SP2 + SW2 +

∫

T [1]Σ
̺
[

− ui
a(x)γiya + µi(x)Γi

]

, (4.10b)

where u ∈ C∞(M, g∨ ⊗ TM) and µ ∈ C∞(M, g∨) are a g∨-valued vector field and a

g∨-valued scalar on M , respectively.

A straightforward computation yields the BV brackets

(SPW1, SPW1)MW = 0, (4.11a)

(SPW1, SPW2)MW = 0, (4.11b)

(SPW2, SPW2)MW = (SP2, SP2)M + (SW2, SW2)W (4.11c)

+ 2

∫

T [1]Σ
̺

[

1

2
Xi

ab(x)γiyayb −
1

2
Lij

a(x)γiγjya (4.11d)

+ Nij(x)γiΓj − Si
a(x)Γiya

]

,

– 9 –
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where the BV antibrackets (SP2, SP2)M , (SW2, SW2)W are given by (4.5c), (3.5c), respec-

tively, and X ∈ C∞(M, g∨ ⊗ ∧2TM), L ∈ C∞(M,∧2g∨ ⊗ TM), N ∈ C∞(M, g∨ ⊗ g∨),

S ∈ C∞(M, g∨ ⊗ TM) are given by

Xi
ab = ui

c∂cP
ab − ∂cui

aP cb − ∂cui
bP ac, (4.12a)

Lij
a = ui

b∂buj
a − uj

b∂bui
a − fk

ijuk
a, (4.12b)

Nij = ui
b∂bµj − fk

ijµk, (4.12c)

Si
a = ui

a + P ab∂bµi. (4.12d)

The joined BV master equations

(SPWr, SPWs)MW = 0, r, s = 1, 2, (4.13)

are satisfied if and only if (4.8), the conditions

Nij = 0, (4.14a)

Si
a = 0, (4.14b)

and (3.8) are simultaneously fulfilled. Indeed, it is easy to see that, when ui is given

by (4.14b), one has

Xi
ab = Aabc∂cµi, (4.15a)

Lij
a = Aabc∂bµi∂cµj − P ab∂bNij, (4.15b)

The geometry of M emerging here will be analyzed in greater detail in section 6. We

anticipate that that M is a Poisson manifold carrying an infinitesimal action of the Lie

algebra g leaving the Poisson structure P invariant, the action being Hamiltonian with

equivariant moment map µ. This geometrical set up allows for the symmetry reduction of

M , which is therefore encoded in the Poisson-Weil model.

The BV variations associated with the actions SPWr are defined as usual according

to (2.2) as δPWr = (SPWr, )MW . Explicitly, one has

δPW1x
a = δP1x

a, (4.16a)

δPW1ya = δP1ya, (4.16b)

δPW1βi = δW1βi, (4.16c)

δPW1γ
i = δW1γ

i, (4.16d)

δPW1Bi = δW1Bi, (4.16e)

δPW1Γ
i = δW1Γ

i, (4.16f)

δPW2x
a = δP2x

a + ui
a(x)γi, (4.16g)

δPW2ya = δP2ya − ∂aui
b(x)γiyb + ∂aµi(x)Γi, (4.16h)

δPW2βi = δW2βi − ui
a(x)ya, (4.16i)

δPW2γ
i = δW2γ

i, (4.16j)

δPW2Bi = δW2Bi − µi(x), (4.16k)

δPW2Γ
i = δW2Γ

i, (4.16l)
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where the variations δPr, δWr are given in (4.9), (3.9), respectively.

From the above analysis, it follows again that the Poisson-Weil sigma model can be

framed in the AKSZ scheme of section 2.

5. The Hitchin-Weil sigma model

In this section, we illustrate the Hitchin-Weil sigma model, which is the main topic of

this paper. We follow closely the AKSZ treatment of ref. [20]. This will lead us on one

hand to realize that the underlying geometry of the model is Poisson-quasi-Nijenhuis rather

than generalized complex, on the other it will give us useful indications about symmetry

reduction in this context, to be discussed in detail in section 6.

The target space of the Hitchin sigma model is a twisted manifold, i.e. a manifold M

equipped with a closed 3-form H ∈ C∞(M,∧3T ∗M),2

∂aHbcd − ∂bHacd + ∂cHabd − ∂dHabc = 0 (5.1)

The field content of the Hitchin sigma model consists of a degree 0 embedding x ∈

C∞(T [1]Σ,M) and a degree 1 section y ∈ C∞(T [1]Σ, x∗T ∗[1]M) as for the Poisson sigma

model. The BV odd symplectic form is

ΩM,H =

∫

T [1]Σ
̺

[

δxaδya −
1

2
Habc(x)δxadxbδxc

]

. (5.2)

It is easy to check that ΩM,H satisfies

δΩM,H = 0 (5.3)

on account of (5.1). The associated BV antibrackets are given by

(F,G)M,H =

∫

T [1]Σ
̺

[

δrF

δxa

δlG

δya

−
δrF

δya

δlG

δxa
+ Habc(x)

δrF

δya

dxb δlG

δyc

]

, (5.4)

for any two functionals F , G on field space. See again app. B for technical details.

The model is characterized by two action functionals

SH1 =

∫

T [1]Σ
̺ yadxa + 2

∫

Γ
x(0)∗H, (5.5a)

SH2 =

∫

T [1]Σ
̺

[1

2
P ab(x)yayb + Ja

b(x)yadxb
]

+

∫

Γ
x(0)∗Φ. (5.5b)

Here, Γ is a 3-fold such that ∂Γ = Σ and x(0) : Γ → M is an embedding such that x(0)|Σ
equals the lowest degree 0 component of the embedding superfield x (see app. A) and whose

choice is immaterial. P ∈ C∞(M,∧2TM), J ∈ C∞(M,End TM), Φ ∈ C∞(M,∧3T ∗M),

are respectively a 2-vector, an endomorphism and a closed 3-form

∂aΦbcd − ∂bΦacd + ∂cΦabd − ∂dΦabc = 0. (5.6)

2 The sign convention of the H field used here is opposite to that employed in ref. [20].
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Further, the compatibility condition

Ja
cP

cb + Jb
cP

ca = 0 (5.7)

holds. The tensors P , J and Φ together define an almost Poisson-quasi-Nijenhuis struc-

ture [44]. The version of the Hitchin model presented here is more general than that

originally expounded in [20], where the 3-form Φ was assumed to be exact (cf. eq. (5.12)

below).

A straightforward computation yields the BV brackets

(SH1, SH1)M,H = 0, (5.8a)

(SH1, SH2)M,H = 0, (5.8b)

(SH2, SH2)M,H = 2

∫

T [1]Σ
̺

[

−
1

6
AH

abc(x)yaybyc (5.8c)

+
1

2
BH

ab
c(x)yaybdxc −

1

2
CH

a
bc(x)yadxbdxc

]

,

where the tensor AH ∈ C∞(M,∧3TM), BH ∈ C∞(M,∧2TM⊗T ∗M), CH ∈ C∞(M,TM⊗

∧2T ∗M) are given by

AH
abc =P ad∂dP

bc + P bd∂dP
ca + P cd∂dP

ab, (5.9a)

BH
ab

c =Jd
c∂dP

ab + P ad(∂cJ
b
d − ∂dJ

b
c) − P bd(∂cJ

a
d − ∂dJ

a
c) (5.9b)

− ∂c(J
a
dP

db) − P adP beHcde,

CH
a
bc =Jd

b∂dJ
a
c − Jd

c∂dJ
a
b − Ja

d∂bJ
d
c + Ja

d∂cJ
d
b (5.9c)

+ P adΦdbc + Jd
bP

aeHcde − Jd
cP

aeHbde.

Therefore, the joined BV master equations

(SHr, SHs)M,H = 0, r, s = 1, 2, (5.10)

are satisfied if and only if

AH
abc = 0, (5.11a)

BH
ab

c = 0, (5.11b)

CH
a
bc = 0. (5.11c)

Conditions (5.11) are satisfied when the almost Poisson-quasi-Nijenhuis structure (P, J,Φ)

is an H-twisted Poisson-quasi-Nijenhuis structure. A more restrictive notion of Poisson-

quasi-Nijenhuis manifold was introduced by Stiénon and Xu in [44] in the untwisted case

H = 0 (see section 6 below). As appears, the target space geometry of the Hitchin model

encoded in the BV master equations is twisted Poisson-quasi-Nijenhuis. This broadens the

scope of our original work on this model [20]. (See also [51, 52] for an alternative approach).

Twisted generalized complex geometry is a special case of twisted Poisson-quasi-

Nijenhuis geometry. For a generalized almost complex manifold, the 3-form Φ is exact,

so that one has

Φabc = ∂aQbc + ∂bQca + ∂cQab, (5.12)
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for some Q ∈ C∞(M,∧2T ∗M). The compatibility conditions are (5.7) and

Ja
cJ

c
b + P acQcb + δa

b = 0, (5.13a)

QacJ
c
b + QbcJ

c
a = 0. (5.13b)

The differential conditions (5.11) are necessary but not sufficient for the target space gen-

eralized almost complex structure to be Courant integrable. To have Courant integrability,

one needs, besides (5.11), a further condition

DHabc = 0 (5.14)

where DH ∈ C∞(M,∧3T ∗M) is a 3-form defined by

DHabc = Jd
aΦdbc + Jd

bΦdca + Jd
cΦdab − ∂a(QbdJ

d
c) − ∂b(QcdJ

d
a) (5.15)

− ∂c(QadJ
d
b) + Habc − Jd

aJ
e
bHcde − Jd

bJ
e
cHade − Jd

cJ
e
aHbde.

The Courant integrability conditions (5.11), (5.14) were first derived in [18] and in equiv-

alent form in [20] before Poisson-quasi-Nijenhuis geometry was formulated in [44].

The BV variations associated with the actions SHr are defined according to (2.2) as

δHr = (SHr, )M,H . Explicitly, one has

δH1x
a = dxa, (5.16a)

δH1ya = dya, (5.16b)

δH2x
a = P ab(x)yb + Ja

b(x)dxb, (5.16c)

δH2ya =
1

2
∂aP

bc(x)ybyc + (∂aJ
b
c − ∂cJ

b
a − P bdHdac)(x)ybdxc (5.16d)

+ Jb
a(x)dyb +

1

2
(Φabc − Jd

cHabd + Jd
bHacd)(x)dxbdxc

From the above analysis, it follows that the also the Hitchin sigma model can be framed

in the AKSZ scheme of section 2.

One can couple the Hitchin and the Weil sigma models and obtain the Hitchin-Weil

sigma model, as one did for the Poisson sigma model. The field space of Hitchin-Weil

model is simply the Cartesian product of those of the Hitchin and Weil models. The BV

odd symplectic form ΩMW,H of the Hitchin-Weil model is correspondingly the sum of those

of the Hitchin and Weil models, ΩMW,H = ΩM,H + ΩW . The BV antibrackets ( , )MW,H

are simply the sum of the BV antibrackets ( , )M,H and ( , )W given by (5.4), (3.3).

The Hitchin-Weil model is characterized by two action functionals,

SHW1 = SH1 + SW1, (5.17a)

SHW2 = SH2 + SW2 +

∫

T [1]Σ
̺
[

iβidγi − iBidΓi − ui
a(x)γiya (5.17b)

− (τia − i∂aµi)(x)γidxa + µi(x)Γi
]

,

where u ∈ C∞(M, g∨ ⊗ TM), τ ∈ C∞(M, g∨ ⊗ T ∗M) and µ ∈ C∞(M, g∨) are a g∨-valued

vector field, a g∨-valued 1-form and a g∨-valued scalar on M , respectively. We note that
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the action SHW2 is intrinsically complex because of the factors i appearing in the third

term. The structure of SH2 my seem arbitrary at this stage. Its eventual justification will

be provided by the results that will entail.

The computation of the BV brackets of the SHWr is lengthy but completely straight-

forward. The result is

(SHW1, SHW1)MW,H =0, (5.18a)

(SHW1, SHW2)MW,H =0, (5.18b)

(SHW2, SHW2)MW,H =(SH2, SH2)M + (SW2, SW2)W (5.18c)

+ 2

∫

T [1]Σ
̺

[1

2
Xi

ab(x)γiyayb + Yi
a
b(x)γiyadxb +

1

2
Ziab(x)γidxadxb

−
1

2
Lij

a(x)γiγjya −
1

2
Mija(x)γiγjdxa + Nij(x)γiΓj

− Rij(x)γidγj − Si
a(x)Γiya − Tia(x)Γidxa + Vi

a(x)dγiya

]

,

where the BV antibrackets (SH2, SH2)M , (SW2, SW2)W are given by (5.8c), (3.5c), respec-

tively, and X ∈ C∞(M, g∨⊗∧2TM), Y ∈ C∞(M, g∨⊗EndTM), Z ∈ C∞(M, g∨⊗∧2T ∗M),

L ∈ C∞(M,∧2g∨ ⊗ TM), M ∈ C∞(M,∧2g∨ ⊗ T ∗M), N,R ∈ C∞(M, g∨ ⊗ g∨),

S, V ∈ C∞(M, g∨ ⊗ TM), T ∈ C∞(M, g∨ ⊗ T ∗M) are given by

Xi
ab =ui

c∂cP
ab − ∂cui

aP cb − ∂cui
bP ac, (5.19a)

Yi
a
b =ui

c∂cJ
a
b − ∂cui

aJc
b + ∂bui

cJa
c − P acΥicb, (5.19b)

Ziab =ui
cΦcab − ∂aΞib + ∂bΞia + Jc

aΥicb − Jc
bΥica, (5.19c)

Lij
a =ui

b∂buj
a − uj

b∂bui
a − fk

ijuk
a, (5.19d)

Mija =
1

2

[

ui
b∂bτja + ∂aui

bτjb − uj
b∂bτia − ∂auj

bτib − 2fk
ijτka (5.19e)

− uj
bΥiba + ui

bΥjba − i∂a(ui
b∂bµj − uj

b∂bµi − 2fk
ijµk)

]

,

Nij =ui
a∂aµj − fk

ijµk, (5.19f)

Rij =
1

2

[

ui
aτja + uj

aτia − i(ui
a∂aµj + uj

a∂aµi)
]

, (5.19g)

Si
a =ui

a + P ab∂bµi, (5.19h)

Tia =τia − Jb
a∂bµi, (5.19i)

Vi
a =Ja

bui
b + P ab(τib − i∂bµi) − iui

a, (5.19j)

where Ξ ∈ C∞(M, g∨ ⊗ T ∗M), Υ ∈ C∞(M, g∨ ⊗ ∧2T ∗M) are given by

Ξia = i(δb
a − iJb

a)(τib − i∂bµi), (5.19k)

Υiab = ∂aτib − ∂bτia − ui
cHcab. (5.19l)

The joined BV master equations

(SHWr, SHWs)MW,H = 0, r, s = 1, 2, (5.20)
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are satisfied if and only if (5.11), the conditions

Nij = 0, (5.21a)

Si
a = 0, (5.21b)

Tia = 0, (5.21c)

and (3.8) are simultaneously fulfilled. Indeed, it is not difficult to check that, when ui and

τi are given by (5.21b) and (5.21c), respectively, one has

Xi
ab = AH

cab∂cµi, (5.22a)

Yi
a
b = −BH

ca
b∂cµi, (5.22b)

Ziab = CH
c
ab∂cµi (5.22c)

Lij
a = AH

abc∂bµi∂cµj − P ab∂bNij, (5.22d)

Mija = −BH
bc

a∂bµi∂cµj − i(δb
a + iJb

a)∂bNij, (5.22e)

Rij = 0, (5.22f)

Vi
a = 0. (5.22g)

The geometrical interpretation of conditions will be analyzed later in section 6. We an-

ticipate that the geometry they describe is closely related to but more general than that

of reduction of generalized complex and Kaehler manifolds under a group action recently

developed by Lin and Tolman in [40, 40] and may suggest a viable framework for reduction

of Poisson-quasi-Nijenhuis manifolds.

In the formulation of refs. [40, 40], generalized complex geometry being con-

cerned, (5.12)–(5.14) hold true. In addition to (5.11), (5.21) and (3.8), it is further assumed

that

Υia = 0, (5.23)

where Υ is given by (5.19l). All the tensors appearing in (5.22) continue of course to vanish,

but one also has a further relation, which pairs with (5.22g),

Wia = 0, (5.24)

where W ∈ C∞(M, g∨ ⊗ T ∗M) is given by

Wia = Qabui
b − Jb

a(τib − i∂bµi) − i(τia − i∂aµi). (5.25)

These conditions plus other regularity conditions are sufficient to ensure the existence of a

reduction of the relevant generalized complex manifold.

The BV variations associated with the actions SHWr are defined as usual according
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to (2.2) as δHWr = (SHWr, )MW,H . Explicitly,

δHW1x
a =δH1x

a, (5.26a)

δHW1ya =δH1ya, (5.26b)

δHW1βi =δW1βi, (5.26c)

δHW1γ
i =δW1γ

i, (5.26d)

δHW1Bi =δW1Bi, (5.26e)

δHW1Γ
i =δW1Γ

i, (5.26f)

δHW2x
a =δH2x

a + ui
a(x)γi, (5.26g)

δHW2ya =δH2ya − ∂aui
b(x)γiyb − (τia − i∂aµi)(x)dγi (5.26h)

− (∂aτib − ∂bτia − ui
cHcab)(x)γidxb + ∂aµi(x)Γi,

δHW2βi =δW2βi + idβi − ui
a(x)ya − (τia − i∂aµi)(x)dxa, (5.26i)

δHW2γ
i =δW2γ

i + idγi, (5.26j)

δHW2Bi =δW2Bi + idBi − µi(x), (5.26k)

δHW2Γ
i =δW2Γ

i + idΓi, (5.26l)

where the variations δHr, δWr are given in (5.16), (3.9), respectively.

From the above analysis, it follows that also the Hitchin-Weil sigma model can be

framed in the AKSZ scheme of section 2.

b transformation is the basic symmetry of generalized complex geometry. Though

originally discovered in this context, b transformation can be straightforwardly generalized

to twisted Poisson-quasi-Nijenhuis geometry. For a thorough analysis of the significance of

b transformation, the reader is referred to [6].

b transformation is parameterized by a 2-form b ∈ C∞(M,∧2T ∗M). It acts in the

3-form H by shifting it by dMb:

H ′
abc = Habc + ∂abbc + ∂bbca + ∂cbab. (5.27)

It acts also on the tensors P , J and Φ defining an almost Poisson-quasi-Nijenhuis structure

by setting

P ′ab = P ab, (5.28a)

J ′a
b = Ja

b − P acbcb, (5.28b)

Φ′
abc = Φabc + ∂aφbc + ∂bφca + ∂cφab, (5.28c)

where φab is given by

φab = bacJ
c
b − bbcJ

c
a + P cdbcabdb. (5.28d)

It is immediate to see that the BV odd symplectic form ΩM,H given in (5.2) is not

invariant under b transformation [20]. To render it invariant, it is necessary to make b

transformation act also on the sigma model fields as

x′a = xa, (5.29a)

y′a = ya + bab(x)dxb. (5.29b)
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One then has

Ω′
M,H = ΩM,H , (5.30)

as required. It is straightforward to verify that the Hitchin action functionals SHr are also

both invariant under b transformation,

S′
Hr = SHr, r = 1, 2. (5.31)

This shows that b transformation is a duality symmetry of the Hitchin model [20].

b transformation can be rendered a symmetry of the Hitchin-Weil model if we stipulate

further that the tensors ui, τi and µi transform as

u′
i
a = ui

a, (5.32a)

τ ′
ia = τia + babui

b, (5.32b)

µ′
i = µi. (5.32c)

Upon doing this, it is readily seen that the Hitchin-Weil action functionals SHWr are also

both invariant under b transformation,

S′
HWr = SHWr, r = 1, 2. (5.33)

As we shall see, b symmetry plays an important role also in the analysis of reduction

given in the next section.

6. Geometrical interpretation

Let M be a manifold. An almost Poisson structure on M is an element P ∈ C∞(M,

∧2TM). An almost Poisson structure P is a Poisson structure if

[P,P ] = 0, (6.1)

where [ , ] denotes the Schoutens-Nijenhius brackets. (More explicitly, [P,P ] ∈

C∞(M,∧3TM) is given by the right hand side of (6.8a) below). (6.1) is nothing but (4.8)

expressed in coordinate free form. As is well known, when a Poisson structure P on M is

given, one can define Poisson brackets on C∞(M) in standard fashion.

Assume now that the our Poisson manifold (M,P ) carries the action of a connected

Lie group G with Lie algebra g represented infinitesimally by the g∨-valued vector field

u ∈ C∞(M, g∨ ⊗ TM). The action is said Hamiltonian, if there exist a g∨-valued scalar

µ ∈ C∞(M, g∨), called the moment map, such that3

ui = −PdMµi, (6.2a)

{µi, µj} = fk
ijµk. (6.2b)

3 Here and below, we view P equivalently as a section of Hom(T ∗M, TM).
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These are precisely conditions (4.14) written in intrinsic notation. (6.2) automatically im-

plies that

lui
P = 0, (6.3a)

lui
uj − fk

ijuk = 0, (6.3b)

as required by the invariance of P and the equivariance of u. These are relations (4.15)

upon taking (4.8), (4.14) into account written again in intrinsic notation.

A classic result of Marsden and Ratiu [53] (see also [54]) ensures that, under these

conditions, if a ∈ g∨ with coadjoint orbit Oa and µ−1(Oa) is a submanifold of M on which

G acts freely and properly, then the quotient Ma = µ−1(Oa)/G inherits a Poisson structure

Pa. Thus, the Poisson-Weil model described in section 4 encodes Poisson reduction.

Next, we want to analyze the extent to which the above standard Poisson reduction

framework extends to Poisson-quasi-Nijenhuis structures. To the best of our knowledge,

no such reduction scheme has been been developed so far. However, since, as shown above,

Poisson reduction is encoded in the Poisson-Weil model, it is reasonable to expect that

Poisson-quasi-Nijenhuis reduction may be encoded in the Hitchin-Weil model expounded

in section 5.

Poisson-quasi-Nijenhuis structures were first introduced by Stiénon and Xu in [44],

who, in turn, were inspired by earlier work by Magri e Morosi [55]. The authors of [44]

considered only the untwisted case, but their analysis can be extended to the twisted case

directly.

A manifold M is called twisted if it is equipped with a closed 3-form H ∈

C∞(M,∧3T ∗M)

dMH = 0. (6.4)

Henceforth, we assume that M is twisted.

An almost Poisson-quasi-Nijenhuis structure on M is a triple (J, P,Φ), where P ∈

C∞(M,∧2TM), J ∈ C∞(M,End TM), Φ ∈ C∞(M,∧3T ∗M) with

dMΦ = 0, (6.5)

(cf. eq. (5.6)) and satisfying the compatibility condition

JP − PJ t = 0 (6.6)

(cf. eq. (5.7)). An almost Poisson-quasi-Nijenhuis structure (J, P,Φ) on M is an H twisted

Poisson-quasi-Nijenhuis structure if

AH = 0, (6.7a)

BH = 0, (6.7b)

CH = 0, (6.7c)
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where the tensor AH ∈ C∞(M,∧3TM), BH ∈ C∞(M,∧2TM⊗T ∗M), CH ∈ C∞(M,TM⊗

∧2T ∗M) are defined by

AH(α, β) = [Pα,Pβ] − P{α, β}P , (6.8a)

BH(α, β) = {α, J tβ}P − {β, J tα}P − {α, β}PJt − J t{α, β}P + iPαiPβH, (6.8b)

CH(X,Y ) = [JX, JY ] − J
(

[JX, Y ] − [JY,X] − J [X,Y ]
)

(6.8c)

− P
(

iX iY Φ − iJX iY H + iJY iXH
)

,

where α, β ∈ C∞(M,T ∗M) and X,Y ∈ C∞(M,TM),

{α, β}K = lKαβ − lKβα −
1

2
dM (iKαβ − iKβα), (6.8d)

for K ∈ C∞(M,∧2TM), and l and i denote Lie derivation and contraction, respectively.

It is straightforward to check that the local coordinate expressions of AH , BH , CH are

precisely those given by eq. (5.9), justifying the claim previously made about the underlying

geometry of the Hitchin model.

In [44], a further condition is added (in the H = 0 case). The 3-form Φ is required to

satisfy the condition

diJΦ = 0, (H = 0). (6.9)

To understand the reason of this condition, we recall the following result proven in [44].

The conditions (6.7) together are equivalent to: 1) (T ∗M, {, }, P ) being a Lie alge-

broid; 2) dJ = [iJ , d] being a degree 1 derivation of the associated Gerstenhaber algebra

(C∞(M,∧∗T ∗M),∧, [., .]); 3) the relation dJ
2 = [Φ, .]. These three properties together

with (6.9) render (T ∗M, {, }, P, dJ ,Φ) a quasi Lie bialgebroid. Thus, an untwisted Poisson-

quasi Nijenhuis structure on M , in the more restricted sense used here, is tantamount of a

quasi Lie bialgebroid structure on T ∗M . The condition (6.9) is added, among other things,

because the relation dJ
2 = [Φ, .] requires as a consistency condition that [dJΦ, .] = 0 and,

as dΦ = 0, (6.9) is sufficient for this to hold. This indicates that the three conditions (6.7)

imply (6.9) or some mild generalization of it. As we have seen, (6.9) does not follow from

our BV analysis. The classical BV master equation yields the conditions which the target

space geometry must satisfy for the welldefinedness of the model, but of course it does

not yield the consistency conditions which these imply. When H 6= 0, the generalization

of (6.9) is not known. Inspection of the condition (5.14) holding in generalized complex

geometry suggests the following condition

d

[

iJΦ + H +
1

2
(iJ2 − iJ iJ)H

]

= 0. (6.10)

This is however a conjecture for the time being. Further investigation on this point seems

necessary.

Poisson-quasi-Nijenhuis geometry is covariant not only under diffeomorphism symme-

try but also under b transformation symmetry. For b ∈ C∞(M,∧2T ∗M), the b-transform

of the 3-form H is

H ′ = H + dMb, (6.11)
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(cf. eq. (5.27)). The b transform of an almost Poisson-quasi-Nijenhuis structure (P, J,Φ)

is given by

P ′ = P, (6.12a)

J ′ = J − Pb, (6.12b)

Φ′ = Φ + dM (iJb − bPb), (6.12c)

(cf. eq. (5.28)). It is straightforward though lengthy to verify that (P, J,Φ) is an H twisted

Poisson-quasi-Nijenhuis structure, then (P ′, J ′,Φ′) is H ′ twisted Poisson-quasi-Nijenhuis

structure.

Assume now that the our Poisson-quasi-Nijenhuis manifold (M,P, J,Φ) carries the

action of a connected Lie group G with Lie algebra g. Intuitively, since the relevant vector

bundle in Poisson-quasi-Nijenhuis is TM⊕T ∗M rather than TM , as in generalized complex

geometry, we expect that the G action is represented at the infinitesimal level not only by

a g∨-valued vector field u ∈ C∞(M, g∨ ⊗ TM), as above, but also by a g∨-valued 1-form

τ ∈ C∞(M, g∨ ⊗ T ∗M), which we name moment 1-form in compliance with common

usage [32 – 35, 40, 41]. We call the G action Hamiltonian, if there exist a g∨-valued scalar

µ ∈ C∞(M, g∨), called the moment map, such that

ui = −PdMµi, (6.13a)

τi = J tdMµi, (6.13b)

{µi, µj} = fk
ijµk. (6.13c)

These are precisely conditions (5.21) written in intrinsic notation. They generalize (6.2) in

obvious fashion. ui and τi organize in the following section A ∈ C∞(M, g∨⊗(TM ⊕T ∗M))

Ai = ui + τi (6.14)

satisfying the relations

〈Ai, Aj〉 = 0, (6.15)

[[Ai, Aj ]]H − fk
ijAk = 0, (6.16)

where 〈·, ·〉 and [[·, ·]]H are the metric and the H twisted Courant brackets of TM ⊕ T ∗M .

A acts on C∞(M,TM ⊕ T ∗M) by the Courant adjoint action

Ai · X = [[Ai,X]]H , X ∈ C∞(M,TM ⊕ T ∗M). (6.17)

This defines a trivially extended g action on TM ⊕ T ∗M preserving its Courant algebroid

structure [32, 33]. This action should integrate to G action in order reduction to be

preformed.

When (6.7), (6.13) hold, one has

lui
P = 0, (6.18a)

lui
J − PΥi = 0 (6.18b)

iui
Φ − dMΞi + iJΥi = 0 (6.18c)

lui
uj − fk

ijuk = 0, (6.18d)

lui
τj − fk

ijτk − iuj
Υi = 0, (6.18e)
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where Ξ ∈ C∞(M, g∨ ⊗ T ∗M), Υ ∈ C∞(M, g∨ ⊗ ∧2T ∗M) are given by

Ξi = (1 + iJ iJ )dMµi, (6.18f)

Υi = dM τi − iui
H. (6.18g)

These are relations (5.22) upon taking (5.11), (5.21) into account written again in intrinsic

notation. They generalize (6.3) in a rather non trivial way. We see that H is not invariant

and that, while P is invariant, J , Φ fail to be so. Similarly, while u is equivariant, τ is not.

In all cases, the obstruction is given by the 2-form Υ.

In the presence of a G action on M , the above geometric framework is covariant under

b transformation provided this acts also on u, τ and µ as

u′
i = ui, (6.19a)

τ ′
i = τi − iui

b, (6.19b)

µ′
i = µi, (6.19c)

(cf. eq. (5.32)). From these relations and from (6.18), one realizes immediately that the

failure of H, J , Φ to be invariant and, similarly, of τ to be equivariant has the form of an

infinitesimal b transform with b = Υi for given i. That this comes about is hardly surprising,

given the b symmetry of the Hitchin-Weil model, from which (6.18) were obtained. It

reflects also the fact that the symmetry of the geometry considered here is larger than the

diffeomorphism one and contains also b transformation, as in generalized complex geometry.

Note that the cohomology class [H] ∈ H3(M, R) and the b symmetry equivalence class of

(P, J,Φ) are both invariant.

The natural question arises about whether it is possible to make all the Υi vanish by

means of a single b transform. It is easy to see that, to this end, it is sufficient that the b

field solves the equation

lui
b = Υi, (6.20)

for all i. It can be shown that such a b field exists if G is a compact Lie group and if the

Lie algebra action (6.17) integrates to a G action [32, 36]. Alternatively, one may impose

the condition

Υi = 0, (6.21)

by hand. This, however, is not yielded by the formalism in natural fashion.

It is natural to wonder whether the above provides a viable framework for the reduc-

tion of Poisson-quasi-Nijenhuis structures. We have no answer as yet, since we have no

mathematical literature with which to compare our results. It is however useful to that

end to examine what is known about reduction in generalized complex geometry.

A generalized almost complex structure J is a section of C∞(End(TM⊕T ∗M)), which

is an isometry of the natural Courant metric 〈 , 〉 of TM ⊕ T ∗M and satisfies

J 2 = −1 (6.22)
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[6]. The generalized almost complex structure J is called a generalized complex structure

if its +i eigenbundles LJ of J is involutive with respect to the Courant brackets [[·, ·]]H of

TM ⊕ T ∗M [6].4

It is often convenient to write a generalized almost complex structure J in the block

form

J =

(

J P

Q −J t

)

, (6.23)

where P ∈ C∞(M,∧2TM), J ∈ C∞(M,EndTM), Q ∈ C∞(M,∧2T ∗M). It is easily

checked that the triple (P, J,Φ), where

Φ = dMQ, (6.24)

is an almost Poisson-quasi-Nijenhuis structure satisfying besides (6.6) two more algebraic

conditions following from (6.22) and corresponding to eq. (5.13). If J is a generalized com-

plex structure, then (P, J,Φ) is a Poisson-quasi-Nijenhuis structure satisfying besides (6.7)

an extra differential condition following from Courant involutivity of LJ and corresponding

to eq. (5.14),

Φ(JX, Y,Z) + Φ(JY,Z,X) + Φ(JZ,X, Y ) − dM (QJ)(X,Y,Z) (6.25)

+ H(X,Y,Z) − H(JX, JY,Z) − H(JY, JZ,X) − H(JZ, JX, Y ) = 0,

with X,Y,Z ∈ C∞(M,TM).

Assume now that our generalized complex manifold (M,J ) carries the the action of a

compact Lie group G with Lie algebra g represented infinitesimally by the vector fields ui.

Following Lin and Tolman [40, 41] (see also [34]), we define a generalized moment map to

be an element Z ∈ C∞(M, g∨ ⊗ (TM ⊕ T ∗M) ⊗ C) of the form

Zi = ui + τi − idMµi (6.26)

such that

JZi = iZi (6.27)

and that (6.13c) holds. It is easy to see that (6.27) implies (6.13a), (6.13b) and summarizes

in intrinsic form (5.22g), (5.24).

Let us assume that (6.21) holds. (6.21) is just (5.23). From (6.18a)–(6.18c) and (6.21),

it follows that H and P , J , Q and, so, J are all invariant. Similarly, (6.18e) and (6.21)

imply that τ is equivariant. According to the authors of [40, 41], under these conditions,

if, for a ∈ g∨ with coadjoint orbit Oa and if µ−1(Oa) is a submanifold of M on which G

acts freely, then the quotient Ma = µ−1(Oa)/G inherits a generalized complex structure

Ja.

The above analysis shows that the reduction scheme of Lin and Tolman is a particular

case of the one worked out in this paper. It seems therefore to point to a reduction

4 The ±i eigenbundles of J are complex and, thus, their analysis requires complexifying TM ⊕ T ∗M

leading to (TM ⊕ T ∗M) ⊗ C.
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framework far more general than that considered by Lin and Tolman. One one hand, it

may apply to Poisson-quasi-Nijenhuis structures, which are more general than generalized

complex ones. On the other, strict invariance may not be necessary at the end and the

weaker conditions (6.18a)–(6.18c) may suffice.

7. Discussion

In sects. 4, 5, we have argued that the Poisson-Weil and Hitchin-Weil sigma models encode

the symmetry reduction of the Poisson and Hitchin sigma models, respectively. In a sense,

coupling to the Weil model should perform the same type of function as gauging and may

be considered to be a gauging in a sense, though, strictly speaking, there is no gauge field

that interacts with the ungauged sigma model fields.

The sigma models studied in this paper cannot be considered fully fledged quantum

field theories as long as gauge fixing is not carried out, since, in the absence of gauge fixing,

the kinetic terms of the fields are ill defined. Fixing the gauge requires restricting the fields

on a suitable functional submanifold L in field space, that is Lagrangian with respect to

the BV odd symplectic form [23 – 25]. The restriction results in certain relations among

the fields. Formal arguments, based on the BV master equation, indicate that the resulting

gauge fixed field theory is independent at the quantum level from the choice of L as long

as the choices considered can be continuously deformed one into another. Unfortunately,

fixing the gauge is usually a technically very hard problem [25, 26].

We have seen that symmetry reduction of a Poisson or a generalized complex manifold

requires the choice of some element a ∈ g∨. The reduced manifold is then the quotient

Ma = µ−1(Oa)/G, where Oa is the coadjoint orbit of a. However, there is no trace of such

a choice in the models we described. It is likely that a enters in some way in the definition

of the functional Lagrangian submanifold L involved in gauge fixing in the Weil sector of

the sigma model. However, at the moment, this is only a speculation. Clearly, much work

remains to be done to reach a better understanding of these matters.
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A. De Rham superfields

In general, the fields of a 2-dimensional field theory are differential forms on a oriented

closed 2-dimensional manifold Σ. They can be viewed as elements of the space C∞(T [1]Σ)
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of functions on the Grassmann degree 1 tangent bundle T [1]Σ of Σ, which we shall call de

Rham superfields. More explicitly, we associate with the coordinates zα of Σ Grassmann

odd partners ζα with

deg zα = 0, deg ζα = 1. (A.1)

T [1]Σ is endowed with a natural differential d defined by

dzα = ζα, dζα = 0. (A.2)

A generic de Rham superfield ψ(z, ζ) is a triplet formed by a 0–, 1–, 2-form field ψ(0)(z),

ψ(1)
α(z), ψ(2)

αβ(z) organized as

ψ(z, ζ) = ψ(0)(z) + ζαψ(1)
α(z) +

1

2
ζαζβψ(2)

αβ(z). (A.3)

The forms ψ(0), ψ(1), ψ(2) are called the components of ψ. Note that, in this formalism,

the exterior differential of Σ can be identified with the operator

d = ζα∂/∂zα. (A.4)

The coordinate invariant integration measure of T [1]Σ is

̺ = dz1dz2dζ1dζ2. (A.5)

Any de Rham superfield ψ can be integrated on T [1]Σ according to the prescription

∫

T [1]Σ
̺ψ =

∫

Σ

1

2
dzαdzβψ(2)

αβ(z). (A.6)

By Stokes’ theorem,
∫

T [1]Σ
̺ dψ = 0. (A.7)

It is possible to define functional derivatives of functionals of de Rham superfields. Let

ψ be a de Rham superfield and let F (ψ) be a functional of ψ. We define the left/right

functional derivative superfields δl,rF (ψ)/δψ as follows. Let σ be a superfield of the same

properties as ψ. Then,

d

dt
F (ψ + tσ)

∣

∣

∣

t=0
=

∫

T [1]Σ
̺ σ

δlF (ψ)

δψ
=

∫

T [1]Σ
̺

δrF (ψ)

δψ
σ. (A.8)

In the applications below, the components of the relevant de Rham superfields carry,

besides the form degree, also a ghost degree. We shall limit ourselves to homogeneous

superfields. A de Rham superfield ψ is said homogeneous if the sum of the form and ghost

degree is the same for all its components ψ(0), ψ(1), ψ(2) of ψ. The common value of that

sum is called the (total) degree deg ψ of ψ. It is easy to see that the differential operator

d and the integration operator
∫

T [1]Σ ̺ carry degree 1 and −2, respectively. Also, if F (ψ)

is a functional of a superfield ψ, then deg δl,rF (ψ)/δψ = deg F − deg ψ + 2.

– 24 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
5

B. The functional derivation δ/δxa

Since, for given x ∈ C∞(T [1]Σ,M), one has y ∈ C∞(T [1]Σ, x∗T ∗[1]M), it is not possible to

vary x keeping y fixed. In fact, the condition δy = 0 is not covariant, as is easy to see, and,

so, it cannot be consistently imposed. This poses a technical problem for the computation

of the functional derivatives δF/δxa, when F explicitly depends on y. The difficulty is

solved by picking a connection Γ of M and requiring that

δcovya = δya − Γb
ca(x)δxcyb = 0, (B.1)

under variation of x. It is convenient to take Γ torsionless. One then computes δcovF/δxa

by varying both x and y with δy given by (B.1). The result depends of course on the choice

Γ. However, in all the relevant calculations, Γ drops out at the end, reflecting the intrinsic

covariance of the theory.

The BV brackets (4.3), (5.4) are to be computed by replacing δ/δxa by δcov/δx
a

throughout. It can be checked that the result does not depend on Γ. Similarly, if St

is a BV master action, then the BV variations, obtained from

δtx
a = (St, x

a), (B.2a)

δtya − Γb
ca(x)δtx

cyb = (St, ya), (B.2b)

also do not depend on Γ.

References

[1] M. Grana, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003].

[2] M. Grana, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from

generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137].

[3] M. Grana, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1

vacua, JHEP 11 (2005) 020 [hep-th/0505212].

[4] L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1

backgrounds, JHEP 11 (2005) 048 [hep-th/0507099].

[5] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281

[math.DG/0209099].

[6] M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis,

math.DG/0401221.

[7] M. Zabzine, Lectures on generalized complex geometry and supersymmetry, Archivum

Mathematicum (supplement) 42 (2006) 119 [hep-th/0605148].

[8] G. Cavalcanti, Introduction to generalized complex geometry, lecture notes, Workshop on

Mathematics of String Theory 2006, Australian National University, Canberra, available at

http://www.maths.ox.ac.uk/˜gilrc/australia.pdf.

[9] S. Guttenberg, Brackets, sigma models and integrability of generalized complex structures,

JHEP 06 (2007) 004 [hep-th/0609015].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://arxiv.org/abs/hep-th/0509003
http://jhep.sissa.it/stdsearch?paper=08%282004%29046
http://arxiv.org/abs/hep-th/0406137
http://jhep.sissa.it/stdsearch?paper=11%282005%29020
http://arxiv.org/abs/hep-th/0505212
http://jhep.sissa.it/stdsearch?paper=11%282005%29048
http://arxiv.org/abs/hep-th/0507099
http://arxiv.org/abs/math.DG/0209099
http://arxiv.org/abs/math.DG/0401221
http://arxiv.org/abs/hep-th/0605148
http://www.maths.ox.ac.uk/~gilrc/australia.pdf
http://jhep.sissa.it/stdsearch?paper=06%282007%29004
http://arxiv.org/abs/hep-th/0609015


J
H
E
P
1
0
(
2
0
0
7
)
0
7
5

[10] E. Witten, Topological sigma models, Commun. Math. Phys. 118 (1988) 411.

[11] E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, S.T.

Yau ed., International Press, Hong Kong, (1992) [hep-th/9112056].
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[29] U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kaehler manifolds and

off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164].

[30] W. Merrell, L.A.P. Zayas and D. Vaman, Gauged (2, 2) sigma models and generalized Kähler

geometry, hep-th/0610116.

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C118%2C411
http://arxiv.org/abs/hep-th/9112056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB248%2C157
http://arxiv.org/abs/hep-th/0310057
http://arxiv.org/abs/hep-th/0407249
http://jhep.sissa.it/stdsearch?paper=12%282006%29039
http://arxiv.org/abs/hep-th/0608145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C2073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C2073
http://arxiv.org/abs/hep-th/0611308
http://arxiv.org/abs/hep-th/0608119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C257%2C235
http://arxiv.org/abs/hep-th/0405085
http://arxiv.org/abs/hep-th/0409250
http://jhep.sissa.it/stdsearch?paper=11%282004%29045
http://arxiv.org/abs/hep-th/0409181
http://jhep.sissa.it/stdsearch?paper=03%282005%29022
http://arxiv.org/abs/hep-th/0501062
http://arxiv.org/abs/hep-th/0603145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB102%2C27
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB102%2C27
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD28%2C2567
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA12%2C1405
http://arxiv.org/abs/hep-th/9502010
http://jhep.sissa.it/stdsearch?paper=01%282006%29041
http://arxiv.org/abs/hep-th/0511144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB363%2C593
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C269%2C833
http://arxiv.org/abs/hep-th/0512164
http://arxiv.org/abs/hep-th/0610116


J
H
E
P
1
0
(
2
0
0
7
)
0
7
5

[31] A. Kapustin and A. Tomasiello, The general (2, 2) gauged sigma model with three-form flux,

hep-th/0610210.

[32] H. Bursztyn, G.R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and

generalized complex structures, math.DG/0509640.

[33] H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, Generalized Kaehler and hyperKaehler

quotients, math.DG/0702104.

[34] S. Hu, Hamiltonian symmetries and reduction in generalized geometry, math.DG/0509060.

[35] S. Hu, Reduction and duality in generalized geometry, math.DG/0512634.

[36] S. Hu and B. Uribe, Extended manifolds and extended equivariant cohomology,

math.DG/0608319.
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